Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Virol ; 96(3): e29506, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38445718

RESUMO

With the global pandemic and the continuous mutations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the need for effective and broadly neutralizing treatments has become increasingly urgent. This study introduces a novel strategy that targets two aspects simultaneously, using bifunctional antibodies to inhibit both the attachment of SARS-CoV-2 to host cell membranes and viral fusion. We developed pioneering IgG4-(HR2)4 bifunctional antibodies by creating immunoglobulin G4-based and phage display-derived human monoclonal antibodies (mAbs) that specifically bind to the SARS-CoV-2 receptor-binding domain, engineered with four heptad repeat 2 (HR2) peptides. Our in vitro experiments demonstrate the superior neutralization efficacy of these engineered antibodies against various SARS-CoV-2 variants, ranging from original SARS-CoV-2 strain to the recently emerged Omicron variants, as well as SARS-CoV, outperforming the parental mAb. Notably, intravenous monotherapy with the bifunctional antibody neutralizes a SARS-CoV-2 variant in a murine model without causing significant toxicity. In summary, this study unveils the significant potential of HR2 peptide-driven bifunctional antibodies as a potent and versatile strategy for mitigating SARS-CoV-2 infections. This approach offers a promising avenue for rapid development and management in the face of the continuously evolving SARS-CoV-2 variants, holding substantial promise for pandemic control.


Assuntos
Anticorpos Biespecíficos , COVID-19 , Humanos , Animais , Camundongos , SARS-CoV-2/genética , Anticorpos Monoclonais/uso terapêutico , Imunoglobulina G , Peptídeos/genética , Poder Psicológico
2.
BMB Rep ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38449302

RESUMO

Gastric cancer (GC), a leading cause of cancer-related mortality, remains a significant challenge despite recent therapeutic advancements. In this study, we explore the potential of targeting cell surface glucose-regulated protein 94 (GRP94) with antibodies as a novel therapeutic approach for GC. Our comprehensive analysis of GRP94 expression across various cancer types, with a specific focus on GC, revealed a substantial overexpression of GRP94, highlighting its potential as a promising target. Through in vitro and in vivo efficacy assessments, as well as toxicological analyses, we found that K101.1, a fully human monoclonal antibody designed to specifically target cell surface GRP94, effectively inhibits GC growth and angiogenesis without causing in vivo toxicity. Furthermore, our findings indicate that K101.1 promotes the internalization and concurrent downregulation of cell surface GRP94 on GC cells. In conclusion, our study suggests that cell surface GRP94 may be a potential therapeutic target in GC, and that antibody-based targeting of cell surface GRP94 may be an effective strategy for inhibiting GRP94-mediated GC growth and angiogenesis.

3.
Medicina (Kaunas) ; 59(12)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38138162

RESUMO

Background and Objectives: Gramicidin, a bactericidal antibiotic used in dermatology and ophthalmology, has recently garnered attention for its inhibitory actions against cancer cell growth. However, the effects of gramicidin on ovarian cancer cells and the underlying mechanisms are still poorly understood. We aimed to elucidate the anticancer efficacy of gramicidin against ovarian cancer cells. Materials and Methods: The anticancer effect of gramicidin was investigated through an in vitro experiment. We analyzed cell proliferation, DNA fragmentation, cell cycle arrest and apoptosis in ovarian cancer cells using WST-1 assay, terminal deoxynucleotidyl transferase dUTP nick and labeling (TUNEL), DNA agarose gel electrophoresis, flow cytometry and western blot. Results: Gramicidin treatment induces dose- and time-dependent decreases in OVCAR8, SKOV3, and A2780 ovarian cancer cell proliferation. TUNEL assay and DNA agarose gel electrophoresis showed that gramicidin caused DNA fragmentation in ovarian cancer cells. Flow cytometry demonstrated that gramicidin induced cell cycle arrest. Furthermore, we confirmed via Western blot that gramicidin triggered apoptosis in ovarian cancer cells. Conclusions: Our results strongly suggest that gramicidin exerts its inhibitory effect on cancer cell growth by triggering apoptosis. Conclusively, this study provides new insights into the previously unexplored anticancer properties of gramicidin against ovarian cancer cells.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Gramicidina/farmacologia , Gramicidina/uso terapêutico , Linhagem Celular Tumoral , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Apoptose , Proliferação de Células , DNA/farmacologia
4.
Front Immunol ; 14: 1271508, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37822941

RESUMO

Introduction: The emergence of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has caused unprecedented health and socioeconomic crises, necessitating the immediate development of highly effective neutralizing antibodies. Despite recent advancements in anti-SARS-CoV-2 receptor-binding domain (RBD)-specific monoclonal antibodies (mAbs) derived from convalescent patient samples, their efficacy against emerging variants has been limited. In this study, we present a novel dual-targeting strategy using bispecific antibodies (bsAbs) that specifically recognize both the SARS-CoV-2 RBD and fusion peptide (FP), crucial domains for viral attachment to the host cell membrane and fusion in SARS-CoV-2 infection. Methods: Using phage display technology, we rapidly isolated FP-specific mAbs from an established human recombinant antibody library, identifying K107.1 with a nanomolar affinity for SARS-CoV-2 FP. Furthermore, we generated K203.A, a new bsAb built in immunoglobulin G4-(single-chain variable fragment)2 forms and demonstrating a high manufacturing yield and nanomolar affinity to both the RBD and FP, by fusing K102.1, our previously reported RBD-specific mAb, with K107.1. Results: Our comprehensive in vitro functional analyses revealed that the K203.A bsAb significantly outperformed the parental RBD-specific mAb in terms of neutralization efficacy against SARS-CoV-2 variants. Furthermore, intravenous monotherapy with K203.A demonstrated potent in vivo neutralizing activity without significant in vivo toxicity in a mouse model infected with a SARS-CoV-2 variant. Conclusion: These findings present a novel bsAb dual-targeting strategy, directed at SARS-CoV-2 RBD and FP, as an effective approach for rapid development and management against continuously evolving SARS-CoV-2 variants.


Assuntos
Anticorpos Biespecíficos , COVID-19 , Animais , Camundongos , Humanos , SARS-CoV-2 , Anticorpos Biespecíficos/uso terapêutico , Anticorpos Neutralizantes , Anticorpos Antivirais
5.
Int J Mol Sci ; 24(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37762405

RESUMO

Considerable evidence has accumulated in the last decade supporting the notion that chronic stress is closely related to the growth, metastasis, and angiogenesis of ovarian cancer. In this study, we analyzed the conditioned media in SKOV3 ovarian cancer cell lines treated with catecholamines to identify secreted proteins responding to chronic stress. Here, we observed that epinephrine and norepinephrine enhanced the secretion and mRNA expression of CXC-chemokines (CXCL1, 2, 3, and 8). Neutralizing antibodies to CXCL8 and CXCL8 receptor (CXCR2) inhibitors significantly reduced catecholamine-mediated invasion of SKOV3 cells. Finally, we found that the concentration of CXCL1 and CXCL8 in the plasma of ovarian cancer patients increased with stage progression. Taken together, these findings suggest that stress-related catecholamines may influence ovarian cancer progression through the secretion of CXC-chemokines.

6.
Biomedicines ; 11(6)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37371752

RESUMO

Gentian violet (GV) is known to have antibacterial and antifungal effects, but recent studies have demonstrated its inhibitory effects on the growth of several types of cancer cells. Here, we investigated the anticancer efficacy of GV in ovarian cancer cells. GV significantly reduced the proliferation of OVCAR8, SKOV3, and A2780 cells. Results of transferase dUTP nick and labeling (TUNEL) assay and Western blot assay indicated that the inhibitory effect of GV on ovarian cancer cells was due to the induction of apoptosis. Moreover, GV significantly increased reactive oxygen species (ROS) and upregulated the expression of p53, PUMA, BAX, and p21, critical components for apoptosis induction, in ovarian cancer cells. Our results suggest that GV is a novel antiproliferative agent and is worthy of exploration as a potential therapeutic agent for ovarian cancer.

7.
ACS Appl Mater Interfaces ; 15(21): 26069-26080, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37192384

RESUMO

Tangent flow-driven ultrafiltration (TF-UF) is an efficient isolation process of milk exosomes without morphological deformation. However, the TF-UF approach with micro-ultrafiltration SiNx membrane filters suffers from the clogging and fouling of micro-ultrafiltration membrane filter pores with large bioparticles. Thus, it is limited in the long term, continuous isolation of large quantities of exosomes. In this work, we introduced electrophoretic oscillation (EPO) in the TF-UF approach to remove pore clogging and fouling of with micro-ultrafiltration SiNx membrane filters by large bioparticles. As a result, the combined EPO-assisted TF (EPOTF) filtration can isolate large quantities of bovine milk exosomes without deformation. Furthermore, several morphological and biological analyses confirmed that the EPOTF filtration approach could isolate the milk exosomes in high concentrations with high purity and intact morphology. In addition, the uptake test of fluorescent-labeled exosomes by the keratinocyte cells visualized the biological function of purified exosomes. Hence, compared to the TF-UF process, the EPOTF filtration produced a higher yield of bovine milk exosomes without stopping the filtering process for over 200 h. Therefore, this isolation process enables scalable and continuous production of morphologically intact exosomes from bovine milk, suggesting that high-quality exosome purification is possible for future applications such as drug nanocarriers, diagnosis, and treatments.


Assuntos
Incrustação Biológica , Exossomos , Animais , Ultrafiltração , Leite , Incrustação Biológica/prevenção & controle , Filtração , Membranas Artificiais
8.
J Control Release ; 360: 940-952, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37001565

RESUMO

Owing to a lack of reliable markers and therapeutic targets, pancreatic ductal adenocarcinoma (PDAC) remains the most lethal malignant tumor despite numerous therapeutic advances. In this study, we utilized cell-SELEX to isolate a DNA aptamer recognizing the natural conformation of the target on the cell surface. PAp7T8, an aptamer optimized by size and chemical modification, exhibited specific targeting to pancreatic cancer cells and orthotopic xenograft pancreatic tumors. To confer therapeutic functions to the aptamer, we adopted a drug-conjugated oligobody (DOligobody) strategy. Monomethyl auristatin E was used as a cytotoxic drug, digoxigenin acted as a hapten, and the humanized anti-digoxigenin antibody served as a universal carrier of the aptamer. The resulting PAp7T8-DOligobody showed extended in vivo half-life and markedly inhibited tumor growth in an orthotopic pancreatic cancer xenograft model without causing significant toxicity. Therefore, PAp7T8-DOligobody represents a promising novel therapeutic delivery platform for PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Preparações Farmacêuticas , Linhagem Celular Tumoral , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Anticorpos , Oligonucleotídeos/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias Pancreáticas
9.
Antiviral Res ; 212: 105576, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36870394

RESUMO

Rapid emergence of new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has prompted an urgent need for the development of broadly applicable and potently neutralizing antibody platform against the SARS-CoV-2, which can be used for combatting the coronavirus disease 2019 (COVID-19). In this study, based on a noncompeting pair of phage display-derived human monoclonal antibodies (mAbs) specific to the receptor-binding domain (RBD) of SARS-CoV-2 isolated from human synthetic antibody library, we generated K202.B, a novel engineered bispecific antibody with an immunoglobulin G4-single-chain variable fragment design, with sub- or low nanomolar antigen-binding avidity. Compared with the parental mAbs or mAb cocktail, the K202.B antibody showed superior neutralizing potential against a variety of SARS-CoV-2 variants in vitro. Furthermore, structural analysis of bispecific antibody-antigen complexes using cryo-electron microscopy revealed the mode of action of K202.B complexed with a fully open three-RBD-up conformation of SARS-CoV-2 trimeric spike proteins by simultaneously interconnecting two independent epitopes of the SARS-CoV-2 RBD via inter-protomer interactions. Intravenous monotherapy using K202.B exhibited potent neutralizing activity in SARS-CoV-2 wild-type- and B.1.617.2 variant-infected mouse models, without significant toxicity in vivo. The results indicate that this novel approach of development of immunoglobulin G4-based bispecific antibody from an established human recombinant antibody library is likely to be an effective strategy for the rapid development of bispecific antibodies, and timely management against fast-evolving SARS-CoV-2 variants.


Assuntos
Anticorpos Biespecíficos , COVID-19 , Animais , Camundongos , Humanos , SARS-CoV-2/metabolismo , Anticorpos Antivirais , Anticorpos Biespecíficos/farmacologia , Microscopia Crioeletrônica , Anticorpos Neutralizantes , Glicoproteína da Espícula de Coronavírus
10.
Biomed Pharmacother ; 150: 113051, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35658213

RESUMO

Colorectal cancer (CRC) is one of the life-threatening malignancies worldwide. Thus, novel potential therapeutic targets and therapeutics for the treatment of CRC need to be identified to improve the clinical outcomes of patients with CRC. In this study, we found that glucose-regulated protein 94 (GRP94) is overexpressed in CRC tissues, and its high expression is correlated with increased microvessel density. Next, through phage display technology and consecutive in vitro functional isolations, we generated a novel human monoclonal antibody that specifically targets cell surface GRP94 and shows superior internalizing activity comparable to trastuzumab. We found that this antibody specifically inhibits endothelial cell tube formation and simultaneously promotes the downregulation of GRP94 expression on the endothelial cell surface. Finally, we demonstrated that this antibody effectively suppresses tumor growth and angiogenesis of HCT116 human CRC cells without causing severe toxicity in vivo. Collectively, these findings suggest that cell surface GRP94 is a novel potential anti-angiogenic target in CRC and that antibody targeting of GRP94 on the endothelial cell surface is an effective strategy to suppress CRC tumor angiogenesis.


Assuntos
Neoplasias Colorretais , Glicoproteínas de Membrana/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/patologia , Proteínas de Choque Térmico HSP70 , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Proteínas de Membrana/uso terapêutico , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo
11.
Anticancer Res ; 41(2): 671-678, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33517271

RESUMO

BACKGROUND/AIM: Hepatocyte growth factor (HGF) acts as a key regulator in promoting ovarian cancer metastasis. Previously, we observed that YYB-101, a humanized anti-HGF antibody, effectively inhibits ovarian cancer cell migration, invasion, and progression. Here, we evaluated the signaling mechanisms affected by YYB-101 that are important in ovarian cancer cell progression. MATERIALS AND METHODS: Using cell migration, invasion and proliferation assays, we evaluated the effects of YYB-101 on A2780/luc and SKOV3 cells. The effects of YYB-101 on signaling molecules were determined by immunocytochemistry and immunoblot analysis. RESULTS: YYB-101 inhibited HGF-induced ovarian cancer cell motility by down-regulating paxillin phosphorylation and actin-cytoskeleton rearrangement. Also, YYB-101 inhibited ovarian cancer cell proliferation by reducing c-MET phosphorylation and activating apoptosis in vitro and in vivo. These effects were significantly enhanced by combining YYB-101 treatment with paclitaxel, a standard chemotherapy drug. CONCLUSION: YYB-101 can be examined as a new therapeutic agent for the treatment of patients with ovarian cancer.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos Imunológicos/farmacologia , Carcinoma Epitelial do Ovário/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fator de Crescimento de Hepatócito/antagonistas & inibidores , Neoplasias Ovarianas/tratamento farmacológico , Animais , Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Apoptose/efeitos dos fármacos , Carcinoma Epitelial do Ovário/metabolismo , Carcinoma Epitelial do Ovário/patologia , Linhagem Celular Tumoral , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Citoesqueleto/patologia , Feminino , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Proteínas Proto-Oncogênicas c-met/metabolismo , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Int J Mol Sci ; 21(9)2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32384770

RESUMO

Antibody drug conjugates (ADCs), consisting of a cancer-specific antibody and cytotoxic payload, are shown to be a potent class of anticancer therapeutics, with enhanced therapeutic efficacy and reduced "off-target" side effects. However, the therapeutic window of ADCs is narrowed by problems such as difficulty in site-specific conjugation of payload, changes in antibody stability due to payload conjugation, and difficulty in tissue penetration. In this respect, aptamers have advantages in drug-delivery, as they can be easily and stably conjugated with cytotoxic drugs. We previously reported that oligobody, an aptamer-antibody complex, is a novel delivery method for aptamer-based therapeutics. In the current study, we describe DOligobody, a drug-conjugated oligobody comprising an aptamer-drug conjugate and an antibody. A cotinine-conjugated anti-HER2 aptamer (cot-HER2apt) was specifically bound to HER2-positive NCI-N87 cells, and underwent receptor-mediated endocytosis. Further, HER2-DOligobody, a cot-HER2apt-conjugated monomethyl auristatin E (cot-HER2apt-MMAE) oligobody, inhibited the growth of HER2-positive NCI-N87 cells. Finally, systemic administration of HER2-DOligobody significantly reduced tumor growth in a xenograft mouse model. Taken together, these results suggest that our DOligobody strategy may be a powerful platform for rapid, low-cost and effective cancer therapy.


Assuntos
Imunoconjugados/uso terapêutico , Neoplasias Mamárias Experimentais/tratamento farmacológico , Receptor ErbB-2/imunologia , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Aptâmeros de Peptídeos/química , Linhagem Celular Tumoral , Proliferação de Células , Cotinina/química , Endocitose , Feminino , Humanos , Imunoconjugados/química , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Oligopeptídeos/química
13.
Biomolecules ; 10(3)2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32138170

RESUMO

Tetraspanin 8 (TSPAN8) is a member of the tetraspanin superfamily that forms TSPAN8-mediated protein complexes by interacting with themselves and other various cellular signaling molecules. These protein complexes help build tetraspanin-enriched microdomains (TEMs) that efficiently mediate intracellular signal transduction. In physiological conditions, TSPAN8 plays a vital role in the regulation of biological functions, including leukocyte trafficking, angiogenesis and wound repair. Recently, reports have increasingly shown the functional role and clinical relevance of TSPAN8 overexpression in the progression and metastasis of several cancers. In this review, we will highlight the physiological and pathophysiological roles of TSPAN8 in normal and cancer cells. Additionally, we will cover the current status of monoclonal antibodies specifically targeting TSPAN8 and the importance of TSPAN8 as an emerging therapeutic target in cancers for monoclonal antibody therapy.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Proteínas de Neoplasias , Neoplasias , Tetraspaninas , Humanos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Tetraspaninas/antagonistas & inibidores , Tetraspaninas/metabolismo
14.
Biomolecules ; 9(11)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31683810

RESUMO

Colorectal cancer (CRC) is one of the leading causes of cancer death worldwide. Cetuximab, a human/mouse chimeric monoclonal antibody, is effective in a limited number of CRC patients because of cetuximab resistance. This study aimed to identify novel therapeutic targets in cetuximab-resistant CRC in order to improve clinical outcomes. Through phage display technology, we isolated a fully human antibody strongly binding to the cetuximab-resistant HCT116 cell surface and identified the target antigen as glucose-regulated protein 94 (GRP94) using proteomic analysis. Short interfering RNA-mediated GRP94 knockdown showed that GRP94 plays a key role in HCT116 cell growth. In vitro functional studies revealed that the GRP94-blocking antibody we developed strongly inhibits the growth of various cetuximab-resistant CRC cell lines. We also demonstrated that GRP94 immunoglobulin G monotherapy significantly reduces HCT116 cell growth more potently compared to cetuximab, without severe toxicity in vivo. Therefore, cell surface GRP94 might be a potential novel therapeutic target in cetuximab-resistant CRC, and antibody-based targeting of GRP94 might be an effective strategy to suppress GRP94-expressing cetuximab-resistant CRC.


Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Antineoplásicos Imunológicos/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/imunologia , Proteínas de Choque Térmico HSP70/imunologia , Proteínas de Membrana/imunologia , Animais , Cetuximab/administração & dosagem , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/fisiopatologia , Resistencia a Medicamentos Antineoplásicos , Células HCT116 , Proteínas de Choque Térmico HSP70/genética , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C
15.
Front Oncol ; 9: 571, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31355133

RESUMO

Current chemotherapy regimens have certain limitations in improving the survival rates of patients with advanced ovarian cancer. Hepatocyte growth factor (HGF) is important in ovarian cancer cell migration and invasion. This study assessed the effects of YYB-101, a humanized monoclonal anti-HGF antibody, on the growth and metastasis of ovarian cancer cells. YYB-101 suppressed the phosphorylation of the HGF receptor c-MET and inhibited the migration and invasion of SKOV3 and A2780 ovarian cancer cells. Moreover, the combination of YYB-101 and paclitaxel synergistically inhibited tumor growth in an in vivo ovarian cancer mouse xenograft model and significantly increased the overall survival (OS) rate compared with either paclitaxel or YYB-101 alone. Taken together, these findings suggest that YYB-101 has therapeutic potential in ovarian cancer when combined with conventional chemotherapy agents.

16.
Cell Signal ; 44: 138-147, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29329782

RESUMO

Lysophosphatidic acid (LPA) has been implicated in the pathology of human ovarian cancer. This phospholipid elicits a wide range of cancer cell responses, such as proliferation, trans-differentiation, migration, and invasion, via various G-protein-coupled LPA receptors (LPARs). Here, we explored the cellular signaling pathway via which LPA induces migration of ovarian cancer cells. LPA induced robust phosphorylation of ezrin/radixin/moesin (ERM) proteins, which are membrane-cytoskeleton linkers, in the ovarian cancer cell line OVCAR-3. Among the LPAR subtypes expressed in these cells, LPA1 and LPA2, but not LPA3, induced phosphorylation of ERM proteins at their C-termini. This phosphorylation was dependent on the Gα12/13/RhoA pathway, but not on the Gαq/Ca2+/PKC or Gαs/adenylate cyclase/PKA pathway. The activated ERM proteins mediated cytoskeletal reorganization and formation of membrane protrusions in OVCAR-3 cells. Importantly, LPA-induced migration of OVCAR-3 cells was completely abolished not only by gene silencing of LPA1 or LPA2, but also by overexpression of a dominant negative ezrin mutant (ezrin-T567A). Taken together, this study demonstrates that the LPA1/LPA2/ERM pathway mediates LPA-induced migration of ovarian cancer cells. These findings may provide a potential therapeutic target to prevent metastatic progression of ovarian cancer.


Assuntos
Carcinoma Epitelial do Ovário/patologia , Proteínas do Citoesqueleto/metabolismo , Lisofosfolipídeos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Neoplasias Ovarianas/patologia , Receptores de Ácidos Lisofosfatídicos/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Feminino , Humanos , Fosforilação , Transdução de Sinais , Proteína rhoA de Ligação ao GTP/metabolismo
17.
Mol Oncol ; 12(3): 356-372, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29316206

RESUMO

The C-type lectin-like domain of CLEC14a (CLEC14a-C-type lectin-like domain [CTLD]) is a key domain that mediates endothelial cell-cell contacts in angiogenesis. However, the role of CLEC14a-CTLD in pathological angiogenesis has not yet been clearly elucidated. In this study, through complementarity-determining region grafting, consecutive deglycosylation, and functional isolation, we generated a novel anti-angiogenic human monoclonal antibody that specifically targets CLEC14a-CTLD and that shows improved stability and homogeneity relative to the parental antibody. We found that this antibody directly inhibits CLEC14a-CTLD-mediated endothelial cell-cell contact and simultaneously downregulates expression of CLEC14a on the surface of endothelial cells. Using various in vitro and in vivo functional assays, we demonstrated that this antibody effectively suppresses vascular endothelial growth factor (VEGF)-dependent angiogenesis and tumor angiogenesis of SNU182 human hepatocellular carcinoma, CFPAC-1 human pancreatic cancer, and U87 human glioma cells. Furthermore, we also found that this antibody significantly inhibits tumor angiogenesis of HCT116 and bevacizumab-adapted HCT116 human colorectal cancer cells. These findings suggest that antibody targeting of CLEC14a-CTLD has the potential to suppress VEGF-dependent angiogenesis and tumor angiogenesis and that CLEC14a-CTLD may be a novel anti-angiogenic target for VEGF-dependent angiogenesis and tumor angiogenesis.


Assuntos
Anticorpos Monoclonais/farmacologia , Moléculas de Adesão Celular/metabolismo , Imunoglobulina G/farmacologia , Lectinas Tipo C/metabolismo , Neovascularização Patológica/tratamento farmacológico , Neovascularização Fisiológica/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Moléculas de Adesão Celular/genética , Comunicação Celular/efeitos dos fármacos , Comunicação Celular/imunologia , Linhagem Celular Tumoral , Feminino , Células HCT116 , Células Endoteliais da Veia Umbilical Humana , Humanos , Imunoglobulina G/imunologia , Lectinas Tipo C/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neovascularização Patológica/imunologia , Neovascularização Fisiológica/imunologia , Fator A de Crescimento do Endotélio Vascular/genética , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Cancer Lett ; 414: 181-189, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29154973

RESUMO

Despite expressing high levels of the epidermal growth factor receptor (EGFR), a majority of oral squamous cell carcinoma (OSCC) patients show limited response to cetuximab and ultimately develop drug resistance. However, mechanism underlying cetuximab resistance in OSCC is not clearly understood. Here, using a mouse orthotopic xenograft model of OSCC, we show that bone morphogenic protein-7-phosphorylated Smad-1, -5, -8 (BMP7-p-Smad1/5/8) signaling contributes to cetuximab resistance. Tumor cells isolated from the recurrent cetuximab-resistant xenograft models exhibited low EGFR expression but extremely high levels of p-Smad1/5/8. Treatment with the bone morphogenic protein receptor type 1 (BMPRI) inhibitor, DMH1 significantly reduced cetuximab-resistant OSCC tumor growth, and combined treatment of DMH1 and cetuximab remarkably reduced relapsed tumor growth in vivo. Importantly, p-Smad1/5/8 level was elevated in cetuximab-resistant patients and this correlated with poor prognosis. Collectively, our results indicate that the BMP7-p-Smad1/5/8 signaling is a key pathway to acquired cetuximab resistance, and demonstrate that combination therapy of cetuximab and a BMP signaling inhibitor as potentially a new therapeutic strategy for overcoming acquired resistance to cetuximab in OSCC.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Bucais/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/antagonistas & inibidores , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Proteínas Morfogenéticas Ósseas/metabolismo , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Cetuximab/administração & dosagem , Receptores ErbB/metabolismo , Humanos , Camundongos Nus , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Pirazóis/administração & dosagem , Quinolinas/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/metabolismo
19.
Sci Rep ; 7(1): 10666, 2017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28878328

RESUMO

CLEC14a (C-type lectin domain family 14 member) is a tumor endothelial cell marker protein that is known to play an important role in tumor angiogenesis, but the basic molecular mechanisms underlying this function have not yet been clearly elucidated. In this study, using various proteomic tools, we isolated a 70-kDa protein that interacts with the C-type lectin-like domain of CLEC14a (CLEC14a-CTLD) and identified it as heat shock protein 70-1A (HSP70-1A). Co-immunoprecipitation showed that HSP70-1A and CLEC14a interact on endothelial cells. In vitro binding analyses identified that HSP70-1A specifically associates with the region between amino acids 43 and 69 of CLEC14a-CTLD. Competitive blocking experiments indicated that this interacting region of CLEC14a-CTLD significantly inhibits HSP70-1A-induced extracellular signal-regulated kinase (ERK) phosphorylation and endothelial tube formation by directly inhibiting CLEC14a-CTLD-mediated endothelial cell-cell contacts. Our data suggest that the specific interaction of HSP70-1A with CLEC14a may play a critical role in HSP70-1A-induced angiogenesis and that the HSP70-1A-interacting region of CLEC14a-CTLD may be a useful tool for inhibiting HSP70-1A-induced angiogenesis.


Assuntos
Moléculas de Adesão Celular/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Lectinas Tipo C/metabolismo , Neovascularização Patológica/metabolismo , Biomarcadores , Adesão Celular , MAP Quinases Reguladas por Sinal Extracelular , Células Endoteliais da Veia Umbilical Humana , Humanos , Fosforilação , Proteômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
20.
Exp Mol Med ; 49(7): e351, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28684865

RESUMO

NHERF1/EBP50 (Na+/H+ exchanger regulating factor 1; Ezrin-binding phosphoprotein of 50 kDa) organizes stable protein complexes beneath the apical membrane of polar epithelial cells. By contrast, in cancer cells without any fixed polarity, NHERF1 often localizes in the cytoplasm. The regulation of cytoplasmic NHERF1 and its role in cancer progression remain unclear. In this study, we found that, upon lysophosphatidic acid (LPA) stimulation, cytoplasmic NHERF1 rapidly translocated to the plasma membrane, and subsequently to cortical protrusion structures, of ovarian cancer cells. This movement depended on direct binding of NHERF1 to C-terminally phosphorylated ERM proteins (cpERMs). Moreover, NHERF1 depletion downregulated cpERMs and further impaired cpERM-dependent remodeling of the cell cortex, suggesting reciprocal regulation between these proteins. The LPA-induced protein complex was highly enriched in migratory pseudopodia, whose formation was impaired by overexpression of NHERF1 truncation mutants. Consistent with this, NHERF1 depletion in various types of cancer cells abolished chemotactic cell migration toward a LPA gradient. Taken together, our findings suggest that the high dynamics of cytosolic NHERF1 provide cancer cells with a means of controlling chemotactic migration. This capacity is likely to be essential for ovarian cancer progression in tumor microenvironments containing LPA.


Assuntos
Quimiotaxia , Lisofosfolipídeos/farmacologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Fosfoproteínas/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Quimiotaxia/efeitos dos fármacos , Citoplasma/metabolismo , Proteínas do Citoesqueleto/metabolismo , Progressão da Doença , Regulação para Baixo , Feminino , Humanos , Lisofosfolipídeos/metabolismo , Mutação , Fosfoproteínas/genética , Ligação Proteica , Transporte Proteico , Pseudópodes/metabolismo , Trocadores de Sódio-Hidrogênio/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...